Asymptotic Properties of Kernel Estimators Based on Local Medians

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic properties of parallel Bayesian kernel density estimators

In this article we perform an asymptotic analysis of Bayesian parallel kernel density estimators introduced by Neiswanger, Wang and Xing [19]. We derive the asymptotic expansion of the mean integrated squared error for the full data posterior estimator and investigate the properties of asymptotically optimal bandwidth parameters. Our analysis demonstrates that partitioning data into subsets req...

متن کامل

Multivariate Local Polynomial Kernel Estimators: Leading Bias and Asymptotic Distribution∗

Masry (1996b) provides estimation bias and variance expression for a general local polynomial kernel estimator in a general multivariate regression framework. Under smoother conditions on the unknown regression and by including more refined approximation terms than that in Masry (1996b), we extend the result of Masry (1996b) to obtain explicit leading bias terms for the whole vector of the loca...

متن کامل

On Asymptotic Properties of Hyperparameter Estimators for Kernel-based Regularization Methods

The kernel-based regularization method has two core issues: kernel design and hyperparameter estimation. In this paper, we focus on the second issue and study the properties of several hyperparameter estimators including the empirical Bayes (EB) estimator, two Stein’s unbiased risk estimators (SURE) and their corresponding Oracle counterparts, with an emphasis on the asymptotic properties of th...

متن کامل

Asymptotic Normality for Deconvolving Kernel Density Estimators

Suppose that we have 11 observations from the convolution model Y = X + £, where X and £ are the independent unobservable random variables, and £ is measurement error with a known distribution. We will discuss the asymptotic normality for deconvolving kernel density estimators of the unknown density f x 0 of X by assuming either the tail of the characteristic function of £ behaves as II I~Oexp(...

متن کامل

Local Self-concordance of Barrier Functions Based on Kernel-functions

 Many efficient interior-point methods (IPMs) are based on the use of a self-concordant barrier function for the domain of the problem that has to be solved. Recently, a wide class of new barrier functions has been introduced in which the functions are not self-concordant, but despite this fact give rise to efficient IPMs. Here, we introduce the notion of locally self-concordant barrier functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Statistics

سال: 1989

ISSN: 0090-5364

DOI: 10.1214/aos/1176347128